RMS Modeling Longitudinal Responses

Regression Modeling Strategies: Modeling Longitudinal Responses

This is the seventh of several several connected topics organized around chapters in Regression Modeling Strategies. The purposes of these topics are to introduce key concepts in the chapter and to provide a place for questions, answers, and discussion around the chapter’s topics.

Overview | Course Notes

Additional links

RMS7

1 Like

Q&A From May 2021 Course

  • What do you suggest for panel data? (longitudinal data with time discrete, as often occurs in patients’ registry). No difference. Can use continuous time methods for discrete time, perhaps only changing to an unstructured covariance matrix if there are 2 or 3 distinct times.
  • Longitudinal data includes 2 time points? 2 or more
  • What if patients were seen at different time-points (clinical routine)?How does it impact time-effect? Continuous-time models such as AR1 handle this nicely.
  • How do you decide whether a generalized least square or a mixed effect model fits better your data? Start with the variogram. For a standard mixed-effects models the assumed variogram is flat.
  • What is your preferred way to calculate R^2 and/or assess explained variance between fixed and random effects for mixed effect models? Haven’t studied that